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Abstract
Path integral Monte Carlo simulations have been carried out for a system of
interacting fermionic particles in one dimension. Due to the fact that the
sign problem can be completely eliminated for one-dimensional systems, such
simulations allow one to obtain accurate energies and particle densities in
arbitrary external potentials. Two cases were considered: electrons in the field
of a uniform neutralizing background and in an effective field of atoms on a
lattice. In the latter case, a clear asymmetry of the charge density distribution
of conducting electrons and holes has been observed.

PACS numbers: 02.70.Ss, 05.30.−d

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent decades have demonstrated an increasing interest to study the properties of strongly
correlated electron systems. Understanding of their behaviour is crucially important for further
progress in the development of nanoscale microelectronic devices. Also accurate, solely first-
principles treatment of interacting electrons is necessary for the description of molecular
structure and molecular interactions.

One of the methods which is specially designed for the simulations of systems of
interacting quantum particles is the path integral Monte Carlo (PIMC) [1]. This method allows,
in principle, us to obtain statistically exact equilibrium averages of physical observables in
many-body quantum systems at finite temperatures. A serious difficulty of the PIMC approach
in application to electrons is the so-called sign problem. This problem originates in the fact
that the wavefunction, describing N fermions (which electrons are), must change sign (be
antisymmetric) upon transposition of any two particles. This results in alternating signs in the
discretized coordinate representation of the density matrix which defines the weight function
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within the PIMC method. At relevant temperatures, contributions from the positive and
negative parts of the weight function almost perfectly cancel each other so that there is no
hope to extract any useful information.

A remarkable feature of the PIMC approach in one dimension is that the method can be
formulated in a way that the sign problem disappears completely. Though this fact was noted
already in 1984 [2], and discussed in a more recent review [3], it remained largely unused
except perhaps the case of lattice models [4, 5]. It was shown in work [6] that the elimination
of the sign problem in one-dimensional case allows one to produce very accurate energies and
density distributions for non-interacting fermions in an external field, with the full account
for the permutational symmetry. Inclusion of the particle’s interactions in the PIMC approach
can be done straightforwardly and does not bring any computational difficulties. Thus, the
properties of interacting identical fermions in one dimension can also be computed with a high
precision.

The aim of this paper is to demonstrate that the PIMC approach is able to provide,
from the first principles, very detailed and accurate information on equilibrium properties of
strongly interacting electron systems in one dimension. One-dimensional case represents a
special interest from both theoretical and experimental points of view. Properties of electron
systems in one dimension are usually described in terms of Luttinger liquid [7, 8] with spectral
and dynamical properties differing from the Fermi liquid which describes electrons in higher
dimensions. From the experimental point of view there is enormous interest to the behaviour
of electrons in quantum wires and carbon nanotubes, where motion of electrons is allowed in
one dimension but strongly restricted in two others [9–11].

2. Simulated system and methodology

In this work, the PIMC method is applied to compute energies, electron densities and electron
correlations in a model of many-electron system in one dimension. At the moment, electrons
are considered as spinless (or polarized). They are put in an external potential which in effective
way represents a field of atomic nuclei and internal electrons. The adopted functional form of
the external potential is

Vex(x) = −ρ0 ln(x(L − x)) + A cos(2πmx/L), (1)

where x (0 < x < L) is the space coordinate and L is the size of the system. The first
term of the potential (1) represents the electrostatic potential of a uniform background charge
density ρ0 spread in the interval [0, L]. In the examples presented below, the background
charge density is approximately equal to the average electron density N/L, so that the whole
system is about electroneutral. The second term in (1) creates m equally separated potential
wells, which may be considered as effective attraction fields of lattice atoms. Parameter A

regulates the strength of the attraction of electrons to these ‘atoms’. All quantities are given
in dimensionless units with the electron charge, the mass and Planck constant equal to 1. The
total potential energy, including electron–electron interactions, is given by

V ({xi}) = 1

2

N∑
i,j=1;i �=j

1
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i=1
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The standard path integral Monte Carlo approach is based on the following expansion of
the density matrix ρ̂ (known also as Trotter expansion) [12]:
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where high-temperature (short-time) density matrices ρ̂(j) = exp
(− β

J
Ĥ

)
are repeated J

times. Following the approach of Takahashi [2], each high-temperature density matrix for a
fermionic system is presented as sum over permutations of high-temperature density matrices
for distinguishable particles, which in the coordinate representation results in
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where V
({

x
(j)

i

})
is the total potential energy (2) of all particles at imaginary time (j). The

canonical partition function is obtained by substituting (4) into (3) and integrating over all
coordinates
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with the boundary conditions x
(1)
i = x

(J+1)
i . By performing Metropolis random walk in the

space of
{
x

(j)

i

}
with the weight function defined by (4), (5), different quantum canonical

averages can be calculated [1, 2, 13]. More details of the simulation procedure, concerning
the types of the Monte Carlo steps, computations of determinants, etc, are given in the previous
paper [6].

3. Results and discussion

A model system consisting of several (9–20) fermionic charged particles in the external
potential (1) has been simulated according to the procedure described above. The parameters
of different simulation runs are gathered in table 1, as well as computed energies. The
background charge density was chosen to be 0.5 which provides the overall neutrality in
the reference cases (runs 1, 2, 4) and approximate neutrality in other cases. The reciprocal
temperature in all cases was set to β = 50 which corresponds essentially to the ground state. A
number of test simulations with different number of beads J = 50–1000 have been performed
and value J = 500 was chosen for all the production runs as providing convergence relative
to further increase of this parameter. The number of MC steps was 109 for the equilibration
and 5 × 109 for the collection of averages. The production part of each run was divided into
ten fragments of 5 × 108 MC steps each, and the statistical uncertainty was evaluated from the
variance of intermediate averages computed over these fragments.

Figure 1 shows coordinate density distributions for 10(a) and 20(b) particles, both series
of simulations being carried out at the same average particle density (runs 1 and 2 in
table 1), in the field of a uniform neutralizing background. The solid lines show
charged particles with full exchange interactions. For comparison, the densities of charged
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Figure 1. Density distribution of 10(a) and 20(b) spinless electrons in one dimensional box (red
solid lines). Also shown are: interacting distinguishable particles (without the exchange; green
dashed lines) and identical non-interacting particles (blue dot lines).

Table 1. Simulation parameters and computed energies for N interacting electrons in the external
potential (1). Background charge density ρ0 = 0.5 in all the cases. Eel is the potential energy of
electron–electron interaction, Eex is the energy of interaction with the external field, Ekin is the
kinetic energy and Etot is the total energy. Statistical uncertainty is given in parentheses.

Run N L A m Eel Eex Ekin Etot

1 10 20 0 – 11.057 −20.420 4.729 −4.635
(0.002) (0.002) (0.005) (0.007)

2 20 40 0 – 28.815 −54.357 8.995 −16.548
(0.004) (0.004) (0.012) (0.015)

3 9 20 1.0 10 8.232 −21.048 4.734 −8.081
(0.004) (0.004) (0.01) (0.012)

4 10 20 1.0 10 10.484 −23.818 6.103 −7.231
(0.002) (0.002) (0.003) (0.004)

5 11 20 1.0 10 13.840 −25.380 7.282 −4.258
(0.002) (0.002) (0.006) (0.008)

6 12 20 1.0 10 17.198 −26.883 8.768 −0.917
(0.002) (0.002) (0.005) (0.007)

distinguishable particles (without the exchange) and densities of non-interacting identical
particles in a box are shown (the densities for non-interacting particles were built as a sum of
N lowest one-particle densities).
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Figure 2. Pair correlation function for 10 (red solid line) and 20 (green dashed line) electrons in
the field of uniform neutralizing background.

It is clearly seen that the density maxima are located at about equal distance from each
other, due to the fact that the electrostatic electron–electron repulsion is counteracted by
the potential (1) from the background charge. Electrons repeal each other both due to the
electrostatic repulsion and the exchange interaction. Interaction and exchange effects amplify
each other leading to higher oscillations of the electron density comparing to the cases when
only exchange or only interaction effects are present. Still, oscillations of the density are not
large and they are decreasing upon the increase of the system size, see figure 1(b). In the limit
of an infinite system (but finite β), the single particle density is expected to tend to its average
value.

Another insight into the properties of interacting electrons can be obtained by looking
at the pair correlation function g(x), which expresses probability to find two particles with
distance x between them, normalized by the condition that the function is equal to 1 for
particles distributed with a uniform probability. The pair correlation functions for 10 and 20
electrons (runs 1 and 2) are shown in figure 2. One can see that the correlation function is
close to 1 for most of distances. Noticeable correlations exist only for neighbouring electrons,
which cannot come close to each other, whereas for the next neighbours correlations are on
the level of a few per cent.

The above described results were obtained when the electrons were in the field of a uniform
background charge. Let us consider possible effect of their interactions with localized atoms
which are mimicked by the second part of the potential (1).

In figure 3(a), the densities of 9–12 electrons in effective field of a 10-site lattice are
displayed (runs 3–6 in table 1). Comparing to the case of a uniform background charge,
the system of 10 electrons shows much better pronounced maxima and minima which is not
surprisingly due to the form of the external potential with the amplitude A = 1. For N = 10,
each electron is essentially localized around the corresponding ‘atom’. Cases different from
10 number of electrons can now be interpreted as the appearance of ‘conducting electrons’
(N = 11, 12) or ‘holes’ (N = 9). One can observe in figure 3(a), that in the case of
excess of electrons, additional electron density appears at the minima of the reference density
corresponding to N = 10, while in the case of a hole (N = 9), the density disappears from
the maxima of that curve.

In figure 3(b), the differences of the total electron density for 9, 11 and 12 electrons, and
the reference density for 10 electrons are displayed. They can be interpreted as the charge
density of a hole or of one or two conducting electrons, respectively. The striking result is a
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Figure 3. Density distribution for 10 (solid red line), 9 (green dash line), 11 (blue short dash line)
and 12 (pink dot line) electrons in the external potential (1) with m = 10 wells of amplitude A = 1
(a) and differences of the density of 9, 11 and 12 electrons with the density of 10 electrons (b).

clearly different behaviour of the conducting electron density (N = 11), which is well centred
in the middle of the system, and the density for the hole (N = 9) that is more delocalized and
even has a tendency to form two maxima closer to the borders of the interval. It is tempting
to note that the electron–hole asymmetry is a topic of current discussions [14–16] including
their possible role in the superconductivity [14].

4. Conclusion

The examples presented here show that the PIMC approach can provide accurate computations
of equilibrium properties of strongly interacting electron systems in one dimension, solely on
the basis of the fundamental relationships of quantum mechanics. The PIMC method can
thus become a power tool in investigation and understanding of such systems. It can be used
for testing of analytical theories describing the properties of electrons in one-dimensional
structures and semiconductors. For example, density functionals can be tested directly since
the electron density and the energy can be readily obtained for a given external potential.
Spin effects can be incorporated by considering exchange between spin-up and spin-down
electrons separately [2]. It seems plausible that the considered approach would work for one-
dimensional-like systems even if one considers three-dimensional space explicitly, with the
motion along two other coordinates strongly restricted by an external potential. Though the
weight function in this case will not be strictly positive, the path trajectories will likely be close
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to the strictly one-dimensional ones, and the sign problem would not be too severe. This would
provide even more realistic description of electrons in quantum-wire-like nanostructures.
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